RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

Laser-Controlled Spin-Wave Interference in an Irregular Magnonic Structure

PII
10.31857/S0044451023010091-1
DOI
10.31857/S0044451023010091
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 163 / Issue number 1
Pages
72-77
Abstract
Using experimental and numerical investigation, we demonstrate laser-controlled propagation and interaction of spin waves in an irregular magnetic structure in the geometry of the Mach–Zehnder interferometer. It is shown that the use of laser radiation for heating one of the interferometer arms leads to controlled interference of a spin-wave signal in the output section. The yttrium–iron garnet film heating under the action of laser radiation is measured experimentally. Using micromagnetic modeling, the evolution of the spin-wave interference pattern under the action of laser heating of one of the interferometer arm is demonstrated. The results of this study ensure a simple solution for developing tunable spin-wave interferometers for the paradigm of the magnonic logics.
Keywords
Date of publication
15.01.2023
Year of publication
2023
Number of purchasers
0
Views
38

References

  1. 1. A. Barman, G. Gubbiotti, S. Ladak et al., J. Phys. Condensed Matter 33, 413001 (2021).
  2. 2. С.А. Никитов, А.Р. Сафин, Д.В. Калябин и др., УФН 190, 1009 (2020).
  3. 3. V.V. Kruglyak, S.O. Demokritov, and D. Grundler, J. Phys. D: Appl. Phys. 43, 264001 (2010).
  4. 4. G. Csaba, Á Papp, and W. Porod, Phys. Lett. A 381, 1471 (2017).
  5. 5. A. Chumak, P. Kabos, M. Wu et al., IEEE Transactions on Magnetics 58, 0800172 (2022).
  6. 6. G. Gubbiotti, Three-dimensional magnonics: layered, micro- and nanostructures, CRC Press (2019).
  7. 7. A. Prabhakar and D.D. Stancil, Spin waves: Theory and applications, Springer (2009).
  8. 8. А. Г. Гуревич, Г.А. Мелков, Магнитные колебания и волны, Физматлит, Москва (1994).
  9. 9. Q. Wang, M. Kewenig, M. Schneider et al., Nature Electronics 3, 765 (2020).
  10. 10. X. Wang, H. Zhang, and X. Wang, Phys. Rev. Appl. 9, 024029 (2018).
  11. 11. Q. Wang, A.V. Chumak, and P. Pirro, Nature Commun. 12, 2636 (2021).
  12. 12. A.V. Sadovnikov, C. S. Davies, S.V. Grishin et al., Appl.Phys. Lett. 106, 192406 (2015).
  13. 13. H. Qin, R.B. Holländer, L. Flajšman et al., Nature Commun. 12, 2293 (2021).
  14. 14. U. Chaudhuri, N. Singh, R. Mahendiran et al., Nanoscale 14, 12022 (2022).
  15. 15. Á Papp, W. Porod, and G. Csaba, Nature Commun. 12, 6422 (2021).
  16. 16. C. Holzmann, A. Ullrich, O.-T. Ciubotariu et al., ACS Appl. Nano Mater. 5, 1023 (2022).
  17. 17. S. Rezende, R. Rodríguez-Suárez, J. L. Ortiz et al., Phys. Rev. B, 89, 134406 (2014).
  18. 18. M. Schreier, A. Kamra, M. Weiler et al., Phys.Rev.B, 88, 094410 (2013).
  19. 19. D. Hoppstädter and U. Netzelmann, Appl. Phys. Lett. 65, 499 (1994).
  20. 20. S.O. Demokritov, B. Hillebrands, and A.N. Slavin, Appl.Phys. Lett. 348, 441 (2001).
  21. 21. A.V. Sadovnikov, E.N. Beginin, S.E. Sheshukova et al., Phys.Rev.B 99, 054424 (2019).
  22. 22. M. Vogel, A.V. Chumak, E.H. Waller et al., Nature Phys. 11, 487 (2015).
  23. 23. O. Dzyapko, I. Borisenko, V. Demidov et al., Appl. Phys. Lett. 109, 232407 (2016).
  24. 24. L.D. Landau and E.M. Lifschitz, Phys. Zs. Sowjet. 8, 153 (1935).
  25. 25. T. L. Gilbert, Phys. Rev. 100, 1243 (1955).
  26. 26. M. Sharad, D. Fan, and K. Roy, J. Appl. Phys. 114, 234906 (2013).
  27. 27. M. Romera, P. Talatchian, S. Tsunegi et al., Nature 563, 230 (2018).
  28. 28. D. Vodenicarevic, N. Locatelli, F.A. Araujo et al., Sci. Rep. 7, 44772 (2017).
  29. 29. T. Brächer and P. Pirro, J. Appl. Phys. 124, 152119 (2018).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library