RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

Hysteresis of Magnetization and Electric Polarization in Magnetic Nanostructures with Dzyaloshinskii–Moriya Interaction

PII
10.31857/S004445102301008X-1
DOI
10.31857/S004445102301008X
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 163 / Issue number 1
Pages
66-71
Abstract
The influence of the Dzyaloshinskii–Moriya interaction (DMI) on the formation of polar structures in nanoscale magnetoelectric films has been studied. The sequence of micromagnetic structures of different topology at magnetization and remagnetization of a film of limited size in a magnetic field oriented along the normal to the film surface is investigated. It is shown that the formation of polar structures is related to the existence of magnetic structures. Specific features of polar states in dependence of the DMI type and the interface symmetry is analyzed.
Keywords
Date of publication
15.01.2023
Year of publication
2023
Number of purchasers
0
Views
36

References

  1. 1. S. Manipatruni, D. N. Nikonov, C. C. Lin, T. A. Gosavi, H. Liu, B. Prasad, Y. L. Huang, E. Bonturim, R. Ramesh and I. A. Young, Nature 565, 7737 (2019).
  2. 2. G. Tian, W. Yang, D. Chen, G. Fan, Z. Hou, M. Alexe and X. Gao, Nat. Sci. Rev. 6, 684 (2019).
  3. 3. M. Y. Liu, T. L Sun, X. L. Zhu, X. Q. Liu, H. Tian and X. M. Chen, J. Amer. Cer. Soc. 104, 6393 (2021).
  4. 4. A. Fert, N. Reyren and V. Cros, Nat. Rev. Mater. 2, 7 (2017).
  5. 5. L. Caretta, E. Rosenberg, F. Buttner, T. Fakhrul, P. Gargiani, M. Valvidares, Z. Chen, P. Reddy, D. A. Muller and C. Ross, Nat.commun. 11, 1 (2020).
  6. 6. S. Rohart and A. Thiaville, Phys. Rev. B 88, 184422 (2013).
  7. 7. C. O. Avci, E. Rosenberg, L. Caretta, F. Buttner, M. Mann, C. Marcus, D. Bono, C. A. Ross and G. Beach, Nat. Nanothech. 14, 561 (2019).
  8. 8. D. H. Kim, M. Haruta, H. W. Ko, G. Go, H. J. Park, T. Nishimura, D. Y. Kim, T. Okuno and Y. Hirata, Nat. Mater. 18, 685 (2019).
  9. 9. M. Heide, G. Bihlmayer, S. Blu¨gel, Phys. Rev. B 78, 140403 (2008).
  10. 10. A. Soumyanarayanan, N. Reyren, A. Fert and C. Panagopoulos, Nature 539, 509 (2016).
  11. 11. A. Samardak, A. Kolesnikov, M. Stebliy, L. Chebotkevich, A. Sadovnikov, S. Nikitov, A. Talapatra, J. Mohanty and A. Ognev, Appl. Phys. Lett. 112, 19 (2018).
  12. 12. L. Wang, Q. Feng, Y. Kim, et al., Nat. Mater. 17, 1087 (2018).
  13. 13. J. Lu, L. Si, Q. Zhang, C. Tian, et al., Adv. Mater. 33, 2102525 (2021).
  14. 14. S. Muhlbauer, B. Binz, F. Jonietz, C. P eiderer, A. Rosch, A. Neubauer, R. Georgii and P. B¨onini, Science 323, 915 (2009).
  15. 15. O. Cortes, M. Beg and V. Nehruji, New J. Phys. 20, 113015 (2018).
  16. 16. I. Dzyaloshinsky, N. J. Phys. Chem. Sol. 4, 241 (1958).
  17. 17. А. К. Звездин, А. П. Пятаков, УФН 179, 897 (2009).
  18. 18. M. Mostovoy, Phys. Rev. Lett. 96, 067601 (2006).
  19. 19. M. J. Donahue, US Department of Commerce, National Institute of Standards and Technology, (1999).
  20. 20. Z. V. Gareeva, N. V. Shulga and R. A. Doroshenko, Europ. Phys. J. Plus 137, 454 (2022).
  21. 21. K. L. Meltov and K. Y. Guslienko, J. Magn. Magn. Mater. 242, 1015 (2002).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library