RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

Hall Effect in Magnetic Tunnel Junctions

PII
10.31857/S0044451023010017-1
DOI
10.31857/S0044451023010017
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 163 / Issue number 1
Pages
5-13
Abstract
We have constructed a theory of the Hall effect appearing during the passage of current in a magnetic tunnel junction due to the spin–orbit interaction in an insulator barrier in the approximation of a delta-shaped barrier potential. Both the normal Hall current flowing in metal banks as a result of asymmetric scattering in the tunneling barrier and the anomalous current existing only in the tunneling barrier due to the presence of the spin–orbit interaction in it are taken into account. We have considered the Rashba interaction that can be of intrinsic origin (noncentrosymmetric form of the barrier) or can be induced by an extraneous electric field emerging as a result of application of a potential difference to the barrier. Such a field can reach a value on the order of 109 W/m, which is close to intrinsic atomic fields. The Hall current has both linear and quadratic components in the voltage applied to the tunnel junction. The existence of the nonlinear Hall voltage corresponding to it has been illustrated experimentally in a CoFeB/MgO/Pt tunnel junction, in which the transverse (Hall) voltage has been measured in the Pt layer.
Keywords
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
4

References

  1. 1. N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Rev. Mod. Phys. 82, 1539 (2010).
  2. 2. J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T. Jungwirth, Rev. Mod. Phys. 87, 1213 (2015).
  3. 3. S. A. Tarasenko, V. I. Perel′, and I. N. Yassievich, Phys. Rev. Lett. 93, 056601 (2004).
  4. 4. A. Matos-Abiague and J. Fabian, Phys. Rev. Lett. 115, 056602 (2015).
  5. 5. A. Vedyaev, N. Ryzhanova, N. Strelkov, and B. Dieny, Phys. Rev. Lett. 110, 247204 (2013).
  6. 6. A. Vedyaev, N. Ryzhanova, N. Strelkov, M. Titova, M. Chshiev, B. Rodmacq, S. Au ret, L. Cuchet, L. Nistor, and B. Dieny, Phys. Rev. B 95, 064420 (2017).
  7. 7. A. V. Vedyaev, M. S. Titova, N. V. Ryzhanova, M. Ye. Zhuravlev, and E. Y. Tsymbal, Appl. Phys. Lett. 103, 032406 (2013).
  8. 8. С. В. Вонсовский, Магнетизм, Наука, Москва (1971).
  9. 9. Л. Д. Ландау, Е. М. Лифшиц, Квантовая механика. Нерелятивистская теория, Наука, Москва (1989).
  10. 10. A. M. Kriman, N. C. Kluksdahl, and D. K. Ferry, Phys. Rev. B 36, 5953 (1987).
  11. 11. Е. А. Караштин, ФТТ 64, 1311 (2022).
  12. 12. И. Ю. Пашенькин, М. В. Сапожников, Н. С. Гусев, В. В. Рогов, Д. А. Татарский, А. А. Фраерман, ЖТФ 89, 1732 (2019).
  13. 13. E. A. Karashtin, J. Magn. Magn. Mater. 552, 169193 (2022).
  14. 14. N. S. Gusev, A. V. Sadovnikov, S. A. Nikitov, M. V. Sapozhnikov, and O. G. Udalov, Phys. Rev. Lett. 124, 157202 (2020).
  15. 15. A. Brataas, Y. Tserkovnyak, G. E. W. Bauer, and B. I. Halperin, Phys. Rev. B 66, 060404(R) (2002).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library